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Abstract. Runtime verification is the discipline of analyzing program
executions using rigorous methods. The discipline covers such topics
as specification-based monitoring, where single executions are checked
against formal specifications; predictive runtime analysis, where prop-
erties about a system are predicted/inferred from single (good) execu-
tions; specification mining from execution traces; visualization of exe-
cution traces; and to be fully general: computation of any interesting
information from execution traces. Finally, runtime verification also in-
cludes fault protection, where monitors actively protect a running system
against errors. The paper is written as a response to the ‘Test of Time
Award’ attributed to the authors for their 2001 paper [45]. The present
paper provides a brief overview of what lead to that paper, what has
happened since, and some perspectives on the future of the field.

1 Introduction

Runtime verification (RV) [39, 55, 10, 26] has emerged as a field of computer
science within the last couple of decades. RV is concerned with the rigorous
monitoring and analysis of software and hardware system executions. The field,
or parts of it, can be encountered under several other names, including, e.g., run-
time checking, monitoring, dynamic analysis, and runtime analysis. Since only
single executions are analyzed, RV scales well compared to more comprehensive
formal methods, but of course at the cost of coverage. Nonetheless, RV can be
useful due to the rigorous methods involved. Conferences and workshops are now
focusing specifically on this subject, including the Runtime Verification confer-
ence, which was initiated by the authors in 2001 as a workshop and became a
conference in 2010, and runtime verification is now also often listed as a subject
of interest in other conference calls for papers.

The paper is written as a response to the ‘Test of Time Award’ attributed
to the authors for the 2001 paper [45] (Monitoring Java Programs with Java
PathExplorer), presented 17 years ago (at the time of writing) at the first Run-
time Verification workshop (RV’01) in Paris, July 23, 2001.

This paper reports on our own RV work, with some references to related
work that specifically inspired us, and discusses the lessons learned and our
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perspective on the future of this field. Note that we do not try to identify all
literature that inspired us. That task would be impossible. Previous publications
of ours [26, 42, 44] have provided more technical tutorial-like presentations of the
field. This paper rather offers information about the motivations for our work
and philosophical considerations. As such this paper is closer in spirit to the
longer paper [43]. It should be mentioned that most of the works over time have
been done in collaboration with other people and inspired/initiated/driven by
other people. We have just been lucky to be in the midst of all this work.

The paper is organized according to the time line of events, first leading up to
[45], then the work described in that paper, the work that followed, and finally
some thoughts on the future of this field.

2 In the Beginning

The initial interest of the first author in formal methods stems from his involve-
ment in the design of the Raise specification language Rsl [30], during the
period 1984-1991, and even with earlier work in the early 1980’ies on develop-
ing a parser and type checker for its predecessor VDM [14, 15, 28]. These are
so-called wide-spectrum specification languages permitting formal specification
at a high level, and “programming” at a low level, all within the same language,
supported by a formal refinement relation between the different levels. These
languages were impressively ahead of their time if one looks at these from a
programming language perspective. For example, Vdm++ has many similarities
with today’s Scala programming language.

However, these languages were fundamentally still specification languages,
and not programming languages, in spite of the fact that these languages have
a lot in common with modern high-level programming languages, such as e.g.
Ml. The thought therefore was: why not benefit from the evolution of modern
high-level programming languages and focus on verification of such? This was
the first step: the focus on programs rather than models. This lead to the work
[34] of the first author on attempting to develop a specification language for an
actual programming language, namely Concurrent ML (Cml), an extension
of Milner’s Ml with concurrency.

Later work with the very impressive Pvs theorem prover [35] helped realize
that theorem proving is hard after all, and that some form of more automated
reasoning on programs would be useful as a less perfect alternative. Hence, thus
far the realization was that automated verification of programs was a desirable
objective. Note that at the time the main focus in the formal methods community
was on models, not programs.

The next big move was the development of the Java PathFinder (Jpf), a
Java model checker, first as a translator from Java to the Promela modeling
language of the Spin model checker [41] (often referred to as Jpf1), and later as
a byte code model checker [50] (occasionally referred to as Jpf2). The goal of
this work was to explore how far model checking could be taken wrt. real code
verification, either using Java as just a better modeling language, or, in the
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extreme case, for model checking real programs. A sub-objective was to explore
the space between testing and full model checking.

Jpf1 suffered from the problem of translating a complex language such as
Java to the much simpler language Promela, resulting in a sensation that this
approach worked for some programs but not for all programs. It was hard to go
the last 20%. Jpf2 solved part of this problem, but suffered from the obvious
problem of state state space explosion. In addition, the model checker itself was
a homemade JVM on top of the real JVM, and hence slow.

At this time we came across two inspiring invited talks at the SPIN 2000
workshop, which we organized. The first was a presentation by Jerry Harrow
from Compaq on the VisualThreads tool [33]. The purpose of this tool was
to support Compaq’s customers in avoiding multithreading errors. Specifically
two algorithms appeared interesting: predictive data race and deadlock detec-
tion. These algorithms can detect the potential for a data race or deadlock by
analyzing a run that does not necessarily encounter the error. The second in-
vited talk was presented by Doron Drusinsky, on the Temporal Rover [25] for
monitoring temporal logic properties. We implemented the data race algorithm,
also known as the Eraser algorithm [61], and a modification of the deadlock de-
tection algorithm in Jpf2. The idea was to first execute the program to check for
data races and deadlocks using the two very scalable algorithms, and then only
if error potentials were found between identified threads, to launch the model
checker focusing specifically on those threads.

The two authors of [45] met at NASA Ames in 2000, when the second author
started his first job right out of school, and this way, without knowing it, a
fruitful, life-time collaboration and friendship with the first author. Inspired
by recent joint work with his PhD adviser, Joseph Goguen, the second author
was readily convinced that otherwise heavy-weight specification-based analysis
techniques can very well apply to execution traces instead of whole systems,
and thus achieve scalability by analyzing only what happens at runtime, as
it happens. This, paired with provably correct recovery, gives the same level
of assurance as formal verification of the whole system, but in a manner that
allows us to divide-and-conquer the task. So the second author was “all in”,
ready to use his fresh algebraic specification and formal verification knowledge
to rigorously analyze execution traces.

At this point, the previously mentioned observations about scalability of the
traditional verification approaches, the experiments with data race and deadlock
detection mentioned above, and some other less technical issues, led to our re-
search focusing just on observing program executions. A constraint was that it
should not be based on test case generation, since so many people were studying
this already. We wanted to follow the path less explored. This is where the Java
PathExplorer project began, inspired by other work, but not too much other
work.
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Fig. 1. The JPaX architecture.

3 Java PathExplorer

Our first pure runtime verification system was Java PathExplorer (JPaX),
described in the award winning paper [45], as well as in other papers [46–49, 60].
The system is briefly described below.

3.1 Architecture

JPaX was a general framework for analyzing execution traces. It supported
three kinds of algorithms: propositional temporal logic conformance checking,
data race detection, and deadlock detection, as discussed earlier. Figure 1 shows
JPaX’s architecture. A Java program is instrumented (at byte code level) to
issue events to the monitoring side, which is customizable, allowing the addition
of new monitors. The temporal logic monitoring module was originally based on
a propositional future time linear temporal logic, but was later extended to also
cover past time.

An interesting aspect of the system was the use of the Maude [21] rewriting
system for implementing monitoring logics as deep DSLs. One could in very few
lines implement, e.g., linear temporal logic (LTL), with syntax and its monitoring
algorithm, and have Maude function as the monitoring engine as well. There
was a grander vision present at the time: to use a powerful Turing complete
language, such as Maude, for monitoring, and not be restricted to just, e.g.,
LTL. However, that vision did not evolve beyond the thought stage, and had to
wait some additional years, as discussed in Section 4. Below we briefly discuss
some of the algorithms developed during the JPaX project.

Future Time LTL The future time LTL monitoring used Maude to rewrite
formulas. Consider, e.g., the LTL formula p U q, meaning q eventually becomes
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true and until then p is true. The implementation of JPaX was based on classical
equational laws for temporal operators, such as:

p U q = q ∧©(p U q) and �p = p ∧©(�p) (1)

Consider the sample formula �(green → ©(¬red U yellow)). Upon encoun-
tering a green in a trace, the formula will be rewritten into the following for-
mula, which must be true in the next state: (¬red U yellow) ∧ �(green →
(¬red U yellow)). In Maude this was realized by a few simple rewrite rules,
including the following two for the until operator (E is an event and T is a trace,
the first rule handles the case of a trace consisting of only one event):

eq E |= X U Y = E |= Y .
eq E,T |= X U Y = E,T |= Y or E,T |= X and T |= X U Y .

3.2 Past Time LTL

Later, an efficient dynamic programming algorithm for monitoring past time lin-
ear temporal logic was developed [48], inspired by an initial encoding in Maude
described in [45]. Consider the following past time formula: red→ �green (when-
ever red is observed, in the past there has been a green). The algorithm for
checking past time formulas like this uses two arrays, now and pre, recording
the status of each sub-formula now and previously. Index 0 refers to the formula
itself with positions ordered by the sub-formula relation. Then for this property,
for each observed event the arrays are updated as follows.

bool pre [0..3], now [0..3];

fun processEvent(e) { // Sub−formula:
now[3] := (event = red) // red
now[2] := (event = green) // green
now[1] := now[2] || pre [1] // PREV green
now[0] := !now[3] || now[1] // red −> PREV green
if !now[0] then output (‘‘ property violated ’’);
pre := now;
}

This dynamic programming algorithm was generalized and optimized in [49, 59]
and later found way into three other systems for monitoring parametric temporal
formulas, namely MOP [57], MonPoly [11], and DejaVu [40].

3.3 Data Races and Deadlocks

When used for bug finding, the effectiveness of runtime verification depends on
the choice of test suite. For concurrent systems this is critical, due to the many
possible non-deterministic execution paths. Predictive runtime verification ap-
proaches this problem by replacing a target property P with a stronger property
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Q such that there is a high probability that the program satisfies P iff a random
trace of the program will satisfy Q. As already mentioned, one such algorithm
was the Eraser algorithm [61], for detecting potentials for data races (where two
threads can access a shared variable simultaneously). It is often referred to as
the lock set algorithm as each variable is associated with a set of locks pro-
tecting it. The lock graph algorithm [33], would detect “dining philosopher”-like
deadlock potentials by building a simple lock graph where a cycle indicates a
deadlock potential. In [13] we augmented the original lock graph algorithm to
reduce false positives in the presence of so-called guard locks (locks that pre-
vent cyclic deadlocks). That paper was later followed by [12], which suggested a
code instrumentation method (inserting wait statements) for confirming found
deadlock potentials. Other forms of data races than those detected by Eraser
are possible. In [3] a dynamic algorithm for detecting so-called high-level data
races (races involving collections of variables) is described.

3.4 Code Instrumentation

JPaX code instrumentation was performed with Compaq’s JTrek [22], a Java
byte code instrumentation tool. Operating at the byte code level offers expressive
power, but makes writing code instrumentation instructions inconvenient. An
attempt was later made to develop an easier to use code instrumentation tool
named JSpy [31] on top of JTrek. In this tool code instrumentation could be
expressed as a set of high-level rules, formulated in Java (an internal Java DSL),
each consisting of a predicate and an action.

3.5 Trace Visualization

Execution trace visualization is a subject that in our opinion has promising po-
tential, although our own involvement in this direction is limited to [4]. The
advantage of visualization is that it can provide a free-of-charge abstract view
of the trace, from which a user potentially may be able to conclude proper-
ties about the program, or at least the execution, without having to explicitly
formulate these properties. We can distinguish between two forms of trace vi-
sualization as outlined in [4]: still visualization, where all events are visualized
in one view, and animated visualization. In [4], an extension of Uml sequence
diagrams with symbols is described for representing still visualizations of the
execution of concurrent programs.

4 The Aftermath

The period after JPaX followed two tracks, which can be summarized as: ex-
periments with aspect-oriented programming for program instrumentation, and
so-called parametric monitoring of events carrying data.
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4.1 Aspect-oriented Programming

Whilst initial runtime verification frameworks targeted Java, the RMOR (Re-
quirement Monitoring and Recovery) framework [36] targeted the monitoring of
C programs against state machines using a homegrown aspect-oriented frame-
work to perform program instrumentation. Rmor was implemented in Ocaml
using Cil (C Intermediate Language), a C program analysis and transforma-
tion system, itself written in Ocaml. Later it was attempted to “go all aspect-
oriented”, meaning that aspects no longer were thought of as just the plumbing
for performing code instrumentation, but instead that monitors are aspects.
Some of our experiments went in the direction of what today is called state-full
aspects [65, 1]. Here one takes a starting point in an aspect-oriented language
framework (such as e.g. AspectJ) and extends it with so-called tracecuts, de-
noting predicates on the execution trace. An advice can be associated with a
tracecut, and executes when the tracecut is matched by the execution. We pro-
posed this line of work already in [27]. Other later work included [51, 63, 16,
62]. The main observation in these works was that aspect-oriented programming
can be extended vertically (allowing more pointcuts) and horizontally (allowing
temporal advice, essentially monitoring temporal constraints).

4.2 Runtime Verification with Data

JPaX had a number of limitations. The perhaps most important was the propo-
sitional nature of the temporal logics. One could not, for example, monitor para-
metric events carrying data, such as openFile(“data.txt”), where openFile is an
event name and “data.txt” is data. It is perhaps of interest to note, that at the
time we were not (and are still not) aware of any system that at the time was
able to monitor such parametric events in a temporal logic.

4.3 The Beginning of Data

These considerations lead to two different systems: Eagle [6] and Mop [19].
Eagle was a small and general logic having similarities with a linear time µ-
calculus, supporting monitoring events with data, and allowing user-defined tem-
poral operators. The later Hawk system [23] was an attempt to tie Eagle to
the monitoring of Java programs with automated code instrumentation using
aspect-oriented programming, specifically AspectJ [53].

The same JPaX limitations that motivated the development of Eagle also
stimulated the apparition of monitoring-oriented programming (Mop) [19, 18,
20]. Mop proposed that runtime monitoring be supported and encouraged as a
fundamental principle of software development, where monitors are automati-
cally synthesized from formal specifications and integrated at appropriate places
in the program. Violations and/or validations of specifications can trigger user-
defined code at any points in the program, in particular recovery code, out-
putting/sending messages, or raising exceptions. Mop has made three important
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early contributions. First, it proposed specification formalism independence, al-
lowing users to insert their favorite or domain-specific requirements specifica-
tion formalisms via logic plugin modules. Second, it proposed automated code
instrumentation as a means to weave the monitoring checking code within the
application; the first version in 2003 used Perl for instrumentation [19], while the
subsequent versions starting with 2004 [18] used AspectJ [53]. Finally, it pro-
posed a formalism-independent semantics and implementation for parametric
specifications. Conceptually, execution traces are sliced according to each ob-
served instance of the parameters, and each slice is checked by its own monitor
instance in a manner that is independent of the employed specification formal-
ism. The practical challenge is how to deal with the potentially huge number of
monitor instances. JavaMop proposed several optimizations, presented in [58]
together with the mathematical foundations of parametric monitoring.

The Eagle system mentioned earlier was considered quite an elegant sys-
tem, but its implementation was complicated. The subsequent rule-based lower
level Ruler system [9] was meant as an “assembler” into which other temporal
specification languages could be compiled for efficient trace checking. However,
it assumed a life of its own as a specification language. Ruler was given a finite-
trace semantics with four verdicts. The verdicts still true and still false are
given if the rule system would accept/reject the trace if it were to end at the cur-
rent event, whilst the verdicts true and false were reserved for traces where
every extension would be accepted/rejected. Ruler allowed for very complex
rule systems that could be chained together such that one rule system produced
outputs for another rule system to consume as input events. Rule systems could
be combined sequentially, in parallel, and conditionally.

A project solidly rooted in an actual space mission was the development of
the LogScope temporal logic for log analysis [7]. The purpose of the project
was to assist the team testing the flight software for JPL’s Mars rover Curiosity,
which successfully landed on Mars on August 6, 2012. The software produces rich
log information. Traditionally, these logs are analyzed with complex Python
scripts. The LogScope logic was developed to support notations comprehensible
to test engineers, including a very simple and convenient data parameterized
temporal logic, which was translated to a form of data parameterized automata,
which themselves could be used for specification of more complex properties that
the temporal logic could not express. LogScope was furthermore implemented
in Python, allowing Python code fragments to be included in specifications,
all in order to integrate with the existing Python scripting culture at JPL.

4.4 Internal DSLs

Earlier we mentioned a grander vision to use a powerful Turing complete lan-
guage for monitoring. The fundamental problem with a logic is that it likely may
be insufficient for practical purposes if not designed extremely optimally. Engi-
neers are, e.g., often observed using Python for monitoring tasks. Of course
in lack of a better notation, but also because it provides expressive power to
perform arbitrary computations, e.g. on observed data. This observation led to
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several experiments with so-called internal DSLs, where one extends a program-
ming language with monitoring features. This allows the user to use the features
of the programming language when the features of the monitoring logic do not
suffice. TraceContract [8, 37] is such an internal Scala DSL (effectively an
API) for monitoring, based on a mixture of temporal logic and state machines.
It is developed using Scala’s features for defining internal DSLs. TraceCon-
tract, although a research tool, was later used for analysis of command se-
quences sent to NASA’s LADEE (Lunar Atmosphere and Dust Environment
Explorer) spacecraft throughout its mission.

Another example of an internal Scala DSL is LogFire [38]. LogFire is a
rule-based system similar to Ruler, but based on a modification of the Rete
algorithm [29, 24], used in several rule-based systems. LogFire was part of an
investigation of the Rete algorithm’s applicability for runtime verification. Log-
Fire has become part of the software that daily processes telemetry data from
JPL’s Mars Curiosity rover. LogFire’s ability to generate facts can be used for
Complex Event Processing (CEP) [56], where higher-level events (abstractions)
are generated from lower-level events. CEP can be used for further analysis
and/or human comprehension, e.g. through visualization. Another CEP system
is Nfer [52], which in part was influenced by our work on rule-based systems,
and LogFire in particular. The result of applying an Nfer specification to an
event stream is a set of time bounded intervals. The specification consists of rules
of the form: name :− body (a rule name followed by a rule body). The semantics
is similar to that of Prolog (hence the :− symbol): when the body is true an
interval is generated with that name. A difference from Prolog is that rule
bodies contain temporal constraints based on operators from Allen Temporal
Logic [2]. Nfer was created due to a need for comprehending large telemetry
streams from Mars rovers. Abstracting these to higher level intervals, compared
to the low level raw event stream, should ease human comprehension.

4.5 First-Order Beyond Slicing

Ruler, as a layer of syntactic sugar on top of the rule formalism, offered a
sub-formalism resembling a data parameterized automaton language. Likewise,
LogScope, inspired by Ruler, offered a data parameterized automaton no-
tation (in addition to the temporal logic). Quantified event automata (Qea)
[5] was an attempt to design a pure data parameterized automaton monitoring
system logic, using the efficient trace slicing approach previously introduced in
the JavaMop tool [57], but dealing with some of the limitations with respect
to expressiveness. A Qea specification consists of a list of first-order quantifica-
tions (universal and existential) and an automaton. They can be compared to
extended state machines (allowing arbitrary guards and actions on transitions
operating on local state, but are more succinct due to the fact that automata are
“spawned” according to parameters (there is a local state for each combination
of parameters).

A different approach to optimizing monitoring of parametric data is imple-
mented in the DejaVu tool [40], which uses BDDs [17] to efficiently represent
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data observed in the trace. Logic-wise, the system supports a standard past
time temporal logic with quantification. The logic in itself is not the innovation,
rather it is the use of BDDs to represent the sets of values observed in the trace
for the quantified variables. The representation of sets of assignments as BDDs
allows a very simple algorithm that naturally extends the dynamic programming
monitoring algorithm for propositional past time temporal logic shown on page
5) and presented in [47], using two vectors now and pre. However, while in [47]
the vectors contain Boolean values, here the values are BDDs.

5 Discussion

Numerous runtime verification logics have been developed over time. They in-
clude various forms of temporal logics, state machines, regular expressions, con-
text free grammars, rule systems, variations of the µ-calculus, process algebras,
stream processing, timed versions of these, and even statistical versions, where
data can be computed as part of monitoring. It is clear that parametric/first-
order versions of these logics are needed. Some efforts have been made to combine
two or more of these logics, such as, e.g., combining temporal logic and regu-
lar expressions. An interesting trend is logics which not just produce a Boolean
value, but rather a data value of any type. This leads to systems computing
arbitrary data values from traces. It is, however, nearly impossible at this point
to estimate which of these approaches would potentially get infused in industrial
settings.

Whether to develop a DSL as external or internal is a non-trivial decision.
An external DSL is usually cleaner and more directly tuned towards the im-
mediate needs of the user. In addition, they are easier to process and therefore
optimize for efficiency. However, the richer the DSL becomes (moving towards
Turing-completeness) the harder the implementation effort becomes. An internal
DSL can be very fast to implement and augment with new (even user-defined)
operators, and can provide an expressiveness that would require a major effort
to support in an external DSL. One also gains the advantage of IDEs for the
host language. A hypothesis is that monitoring logics used in practice will need
to support very expressive expression languages to process data, such as strings
and numbers that are part of the observed events. Temporal logic could become
part of a programming language assertion language. This could be seen as part
of a design-by contract approach also supporting pre/post conditions and class
invariants.

An important topic may be inferring specifications from execution traces.
Our own limited work in this area includes [64, 54]. Related to specification
mining is execution trace visualization (the visualization can be considered a
learned model). The advantage of visualization is that it can provide a free-of-
charge abstract view of the trace, from which a user potentially may be able to
conclude properties about the program, or at least the execution, without having
to explicitly formulate these properties.
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Full verification is of course preferred over partial verification performed by a
monitor. The combination of static and dynamic verification can provide the best
of both worlds: prove as much as is feasible statically and verify the remaining
proof obligations during runtime. To properly achieve this goal, we need formal
specifications not only for the properties to verify, but also for the program-
ming language itself. Moreover, we need provably correct monitor generation
techniques, so we can put all the specification and proof artifacts together and
assemble a proof of correctness for the entire system. Interestingly, once a speci-
fication of the programming language itself is available, then one can go even one
step further and monitor the execution of the program even against the language
specification. This may seem redundant at first, but it actually makes full sense
for some languages with complex semantics, like C. For example, tools like Val-
grind or UBSan detect undefined behaviors in C/C++ programs, which are
essentially deviations from the intended language semantics. The RV-Match
tool [32] is an attempt to push runtime verification in this direction.

In fault-protection strategies, the goal is to recover the system once it has
failed. The general problem of how to recover from a bad program state is inter-
esting and quite challenging. The ultimate solution to this problem can be found
in planning and scheduling systems, where a planner creates a plan (straight-line
program) to execute for a limited time period, an executive executes the plan,
and a monitor monitors the execution. Upon failure detected by the monitor, a
new plan (program) is generated online.
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annakopoulou and D. Méry, editors, 18th International Symposium on Formal
Methods (FM’12), Paris, France, August 27-31, 2012. Proceedings, volume 7436
of LNCS, pages 68–84. Springer, 2012.

6. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In VMCAI, volume 2937 of LNCS, pages 44–57. Springer, 2004.

7. H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal analysis of log files.
Journal of Aerospace Computing, Information, and Communication, 7(11):365–
390, 2010.

8. H. Barringer and K. Havelund. TraceContract: A Scala DSL for trace analysis. In
Proc. of the 17th International Symposium on Formal Methods (FM’11), volume
6664 of LNCS, pages 57–72. Springer, 2011.

11



9. H. Barringer, D. E. Rydeheard, and K. Havelund. Rule systems for run-time
monitoring: From Eagle to RuleR. Journal of Logic and Computation, 20(3):675–
706, 2010.

10. E. Bartocci, Y. Falcone, A. Francalanza, M. Leucker, and G. Reger. An introduc-
tion to runtime verification. In Lectures on Runtime Verification - Introductory
and Advanced Topics, volume 10457 of LNCS, pages 1–23. Springer, 2018.

11. D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring of metric
first-order temporal properties. In Proceedings of the 28th IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
volume 2 of Leibniz International Proceedings in Informatics (LIPIcs), pages 49–
60. Schloss Dagstuhl - Leibniz Center for Informatics, 2008.

12. S. Bensalem, J.-C. Fernandez, K. Havelund, and L. Mounier. Confirmation of dead-
lock potentials detected by runtime analysis. In Parallel and Distributed Systems:
Testing and Debugging (PADTAD’06), Portland, Maine, USA, July 2006.

13. S. Bensalem and K. Havelund. Dynamic deadlock analysis of multi-threaded pro-
grams. In Haifa Verification Conference, Haifa, Israel, November 13-16, 2005,
volume 3875 of LNCS, pages 208–223. Springer, 2006.

14. D. Bjørner and C. B. Jones, editors. The Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer, 1978.

15. D. Bjørner and C. B. Jones. Formal Specification and Software Development.
Prentice Hall International, 1982. ISBN 0-13-880733-7.

16. E. Bodden and K. Havelund. Aspect-oriented race detection in Java. IEEE Trans.
Softw. Eng., 36(4):509–527, July 2010.

17. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. (), 24(3):293–318, 1992.
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